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An integration method for step-scanned single-crystal intensity data based upon

®tting of the individual diffraction pro®les by a pseudo-Voigt function is

presented. Algorithms for both the recovery of weak intensities from data sets

and the rejection of aberrant peak pro®les are discussed. The ideas presented in

this paper have been implemented in a software package for Microsoft

Windows, WinIntegrStp, which is available at http://www.crystal.vt.edu/.

1. Introduction
Changes in crystal structure with temperature or pressure are

generally subtle. Therefore the most accurate intensity data

are required in order to follow reliably the evolution of

structures with pressure or temperature through a series of

structure re®nements using intensity data collected at

different conditions. Yet high-pressure intensity data, in

particular, are of intrinsically lower quality than data collected

in air. Diffracted intensities are reduced by absorption by the

components of the pressure cell, while scattering from the

latter leads to high levels of highly structured background

intensity. Furthermore, access to the sample is restricted. This

has two important consequences. First, the total number of

accessible re¯ections is typically one-third or less of the entire

data set (e.g. Finger & King, 1978). A few incorrect integrated

intensities can therefore strongly bias a structure re®nement,

resulting in incorrect values of positional and thermal para-

meters. Second, the collection of symmetry-equivalent re¯ec-

tions is limited and the identi®cation and rejection of aberrant

intensities by averaging symmetry-equivalent re¯ections (e.g.

Blessing, 1987) is often not possible. Although new data

collection procedures have been developed to reduce and/or

identify incorrect intensities (e.g. Angel et al., 2000; Loveday et

al., 1990) the ability to obtain an accurate structure re®nement

from high-pressure diffraction data remains critically depen-

dent on the recovery of the maximum possible number of

accurate intensities from the data set and the exclusion of

incorrect intensity data.

It has long been acknowledged that the collection of single-

crystal intensity data by step scans offers considerable

advantages over alternative methods that integrate the

diffracted intensity either in the detector itself or its associated

electronics (e.g. Diamond, 1969; Blessing et al., 1974; Pavese &

Artioli, 1996). The storage of step-scanned data offers the

opportunity to identify double diffraction events and inter-

ference from environmental cells, as well as allowing correc-

tions to be made for such effects as non-uniform backgrounds

and thermal diffuse scattering. Yet most available software do

not exploit this potential of step-scanned data and instead

employs what might be termed the `traditional' or `counting'

method of integration, often called `background±peak±back-

ground'. A certain percentage of both ends of each scan are

pre-de®ned as background, and the counts at the steps

between these limits are assigned to the integrated intensity of

the peak from which the background is subsequently

subtracted. Some integration programs implement a dynamic

setting of the background limits, often following the algorithm

proposed by Lehmann & Larsen (1974). This algorithm has

the advantage over ®xed background methods that it improves

the I/e.s.d.(I) ratio by only integrating the peak area. The

dynamic setting of background limits also allows for the peak

being slightly offset from the middle of the scan range.

However, while these `counting' methods for the integration

of step scans provide good estimates of integrated intensities

for peaks with good signal-to-noise ratios, they have several

limitations. They provide no information about peak shape

with which to test whether the maximum in a step scan actu-

ally arises from the crystal diffraction, or whether it is an

artefact, perhaps arising from diffraction from an environ-

mental cell. Neither do `counting' methods provide a

mechanism for the recovery of weak re¯ections from data sets.

As a consequence, experience has shown that in order to

obtain high-quality structure re®nements from crystals held at

high pressures in diamond-anvil cells, every re¯ection pro®le

in a data set must be visually examined by the experimentalist,

which is a long and tedious process open to human misjud-

gement and error.

By contrast, `learnt-pro®le' (Diamond, 1969; Gaødecka,

1999) and peak-pro®ling methods in which the step-scan data

for each re¯ection are ®tted with an appropriate pro®le

function provide the possibility of addressing these issues

(Pavese & Artioli, 1996). Tests for peak rejection can be

quanti®ed, based on the re®ned peak shape parameters. The

parameters for the pro®le functions and the positions of the

weaker peaks can be constrained from the more reliable

values obtained from re®nement to the stronger peaks. More

weak intensities can thereby be recovered from the data set.

Together, these two properties of peak pro®ling allow the
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entire integration process to be automated. For a full historical

review of peak-pro®ling methods as applied to single-crystal

diffraction data, the reader is encouraged to consult the work

of Pavese & Artioli (1996) and the references therein. In this

paper a practical implementation of peak-pro®ling methods

based upon the work of Pavese & Artioli (1996) is described.

2. Methods

2.1. Profile function

Following Gaødecka (1993) and Pavese & Artioli (1996), an

! step scan over a diffraction maxima can be described as a

pair of pseudo-Voigt functions representing the �1 and �2

contributions to the pro®le, plus a locally constant background

term

I�!� � PV1�!� � PV2�!� � constant: �1�
Each single pseudo-Voigt function is written as

PV�!� � I�ÿ

2��!ÿ !0�2 � ÿ2
� 2I�1 ÿ ���ln 2�1=2

ÿ�1=2

� exp ÿ 2�!ÿ !0��ln 2�1=2

ÿ

� �2
( )

: �2�

The four re®neable parameters for a single pseudo-Voigt

function are thus position !0, total integrated intensity I, the

full width of the peak at half-maximum ÿ, and the mixing

parameter �, which is zero for a pure Gaussian peak and 1 for

a pure Lorentzian. The numerical constants � and �ln 2�1=2 in

(2) serve to normalize the pro®le so that the parameter I is the

true integrated intensity proportional to jF 2
obsj after correction

for geometric and polarization factors. Asymmetry of the peak

pro®le could be included (e.g. Gaødecka, 1993) but has not yet

been found to be necessary in practice for data sets collected

with laboratory diffractometers.

When both �1 and �2 wavelengths contribute peaks to the

pro®le [as in equation (1)] it is reasonable to assume that both

peaks have the same � and ÿ parameters. The position of the

�2 peak is calculated from that of the �1 peak plus an offset

due to the known �1/�2 dispersion (see below). The relative

integrated intensity of the �2 peak is expressed in terms of a

re®neable parameter Iratio = I(�2)/I(�1). The peak function

de®ned by equations (1) and (2) then provides a reasonable

representation of the peak shape over a wide range of Bragg

angles. This formulation therefore results in six re®neable

parameters for each re¯ection scan: the background term, the

full width of the both peaks at half-maximum ÿ, the integrated

intensity of the �1 peak, the position !0 of the �1 peak, the

mixing parameter � of both peaks, and the intensity of the �2

peak as a fraction of the �1 peak, Iratio = I(�2)/I(�1).

The offset of the position of the �2 peak from the �1 peak is

not a re®neable parameter, but depends on the geometry of

the incident beam optics on the diffractometer. For an

unmonochromated source, and also for one with a mono-

chromator whose diffracting plane is 90� from that of the

diffractometer, the offset of the �2 peak is arcsin(�2 sin�1/�1)

ÿ �1. The frequently used approximation ��/� tan�1 for this

offset is in error by �10ÿ4 degrees at 2� = 40� and by �10ÿ3

degrees for 2� > 80� for Mo K� radiation. For a mono-

chromator in parallel geometry there can be an additional

offset of the �2 peak due to the �1±�2 dispersion by the

monochromator crystal. This additional offset is added to the

sample dispersion when the detector lies on one side of the

direct beam, and subtracted when the detector lies on the

other side.

2.2. Peak discrimination tests

As noted above, the re®nement of a peak pro®le function

provides the opportunity to test for abnormal peak shapes

automatically and to reject the corresponding intensity data.

The success, or otherwise, of an implementation of an auto-

matic method of integration depends upon its ability to

discriminate against pro®le maxima with aberrant shapes,

while retaining valid pro®les and recovering integrated

intensities from weak but valid data. Extensive testing has

indicated that the order in which the various tests are applied

to the pro®le parameters makes a signi®cant difference to the

success or otherwise of this discrimination process. The

following sequence of tests is the one that has, so far, been

Figure 1
A ¯ow chart illustrating the sequence of tests applied to the re®ned
parameters of a pro®le function. Grey boxes indicate re®nements, while
white rectangular boxes indicate the tests. The test sequence is exited at
the ®rst failure. During the main integration of a data set, those
re¯ections that fail on the ®rst cycle of tests are re-integrated with the
position of the peak function ®xed by the UB matrix. The test sequence is
then repeated on the new pro®le parameters.

electronic reprint



found to be the most reliable in terms of both rejecting

aberrant pro®les and not rejecting valid pro®les. A ¯ow chart

summarizing this sequence appears as Fig. 1.

The ®rst group of tests is applied to all pro®le re®nements.

(i) Least-squares errors, including non-convergence in the

re®nement, invalid data, and various math errors. In practice

these are exceedingly rare except when the data scan does not

actually contain a maximum in the count rate.

(ii) Rwp =
P

wi�yi;obs ÿ yi;calc�2=
P

wiy
2
i;obs is tested against a

preset value; twice the value of Rwp of the strong re¯ections in

the data set appears to provide good discrimination. Rwp

appears to be a more sensitive test of peak shape than alter-

native measures of ®t. The test is not, however, applied if the

re¯ection has unequal backgrounds at the two ends of the scan

range because this case invariably leads to rejection as a result

of the higher background (often a diffraction peak from a cell

component) not being ®tted.

(iii) Background level against preset values (usually zero for

minimum and a sensibly chosen maximum value).

(iv) Intensity against a minimum preset value (usually 0).

The peak shape is then tested because this provides a good

discrimination against peaks affected by double diffraction

events (e.g. Fig. 2a). However, these tests involve the re-

re®nement of additional pro®le parameters and are therefore

not reliable for low intensities. A cut-off of I/�(I) > 6 appears

to be reasonable.

(v) A second re®nement is performed in which the intensity

and Iratio are re®ned. If the �1±�2 doublet is well resolved, then

ÿ and the peak position are also re®ned. The values of ÿ or

Iratio from this re-re®nement are then tested against pre-set

limits.

The last test is applied to all re¯ections:

(vi) The deviation of the peak position !0 from the centre of

the scan is tested against pre-set limits. This test is applied to

the original re®nement if I/�(I) < 6, or to the re-re®nement if

I/�(I) > 6.

The limits to what are considered valid parameter values

must be chosen in the light of the quality of the individual data

set, although default values can be selected that are suitable

for a majority of data sets from a given instrument. The effect

on the integration of a particular data set of these limiting

values can be quickly explored provided that a graphical

interface is part of the integration program.

3. Implementation

In order to obtain the best estimates of intensities from the

integration process, it is useful to constrain some of the other

®ve parameters in the least-squares re®nement of each scan.

This is particularly important for weak re¯ections, for which

parameter correlations can lead in a full re®nement to

physically meaningless parameter values such as negative

intensities. The underlying principle to be applied is that the

shapes of the pro®les of all of the re¯ections from one crystal

on one diffractometer can be described by either constant

values for the parameters (e.g. Diamond, 1969), or by values

that vary smoothly and systematically across the data set. The

®rst step of an integration is therefore some `preliminary

processing' of the data set to determine these values. These

values are then employed in the `main integration' of the

entire data set, including the recovery of the weak re¯ection

data. The overall procedure is based in part on the ideas

developed by Pavese & Artioli (1996). In a sense this proce-

dure is similar to the `learnt-pro®le' approach (e.g. Diamond,

1969; Gaødecka, 1999, 2002), but here a speci®c pro®le func-

tion for each component of the doublet is being imposed a

priori as a model.

3.1. Preliminary processing

The values of the peak-shape parameter � and the intensity

ratio Iratio are often found to be the same for all data sets

collected with a given diffractometer con®guration, indicating

that the incident beam pro®le is dominating the peak shape. In
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Figure 2
Observed (symbols) and ®tted (line) peak pro®le functions. (a) A case of
double diffraction leading to an incorrect pro®le and rejection by the test
sequence in the ®tting procedure. This peak would be integrated by a
simple `counting method'. Interference by diffraction from a diamond-
cell component (arrowed) in the pro®les shown in (b) and (c) is excluded
by the ®tting routine. `Counting method' integration underestimates the
intensity of the pro®le in (b) because of the high background at the end of
the scan, but overestimates the intensity in (c) by including the cell
contribution in the peak intensity.
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such cases any variation in the values of these two pro®le

parameters becomes an extremely sensitive indicator of a

change in the alignment of the diffractometer and incident-

beam optics. Neither parameter can be reliably determined

from low-angle re¯ections because the overlap of the �1 and

�2 components leads to strong correlations in the least-squares

re®nement of the pro®le function. The parameters � and Iratio

are therefore best determined for a sample crystal by ®tting a

few slow scans of strong high-angle peaks from a good-quality

crystal in which the doublet is well resolved. In the subsequent

integration of data sets, the values of � and Iratio are kept ®xed

at the predetermined values (see also Pavese & Artioli, 1996).

If, however, the crystal contributes signi®cantly to the peak

shape, then the value of � can be expected to vary from sample

to sample and must therefore be determined for each sample.

Many authors (e.g. Destro & Marsh, 1987; Pavese & Artioli,

1996; Gaødecka, 1999) have noted that the intensity is strongly

correlated with the background parameter. Ways have there-

fore been sought to provide more reliable integrated inten-

sities through ®xing or constraining the background

parameter. Because the level of the radiation background in a

data set collected in air varies smoothly with the setting angles

of the diffractometer, Pavese & Artioli (1996) used a poly-

nomial function of the diffractometer setting angles to de®ne

the background value for each re¯ection. Gaødecka (2002)

employed a polynomial function of 2� combined with terms

proportional to the direction cosines of the diffracted beam.

However, data sets collected from crystals held in diamond-

anvil pressure cells have a strong local variation in background

levels that cannot be usefully described by any such global

parameterization. Instead the idea of a `®xed background' is

borrowed from the `counting' methods of integration. The

background of each scan is ®xed to the average of the counts

of a selected number of steps at both ends of each individual

scan, provided that the peak pro®le does not extend into the

region de®ned as background. If the background levels at the

two ends of a scan are signi®cantly different (as can be caused

by diffraction maxima from pressure cell components, e.g. Fig.

2b) then the lower value can be taken as an estimate of the

background level under the diffraction pro®le from the sample

crystal.

The peak width parameter depends on both the instrument

and the crystal and can normally be expected to show a slight

increase with 2� that can be successfully modelled as a func-

tion ÿ = a + b tan�. In order to obtain the parameters a and b

the entire data set is integrated, with the parameters ÿ,

intensity and position re®ned independently for each re¯ec-

tion, while the background level is determined and ®xed for

each re¯ection, and � and Iratio are kept ®xed at the prede-

termined values. The variation of ÿ with 2� is then determined

from the re®ned values for the strong re¯ections [typically I >

30e.s.d.(I), where e.s.d. is the estimated standard deviation or

`standard uncertainty'] that also pass the peak pro®le tests

outlined above and shown in Fig. 1.

The UB matrix can also be reliably determined from the

setting angles of this same set of strong re¯ections. The setting

angles 2�, � and ' at which the data collection scan of each

re¯ection was performed are copied from the input data, and

the ! angle assigned to each re¯ection is the position of the �1

component of the diffraction peak, as obtained from the least-

squares ®tting of the diffraction pro®le. In this way, unit-cell

parameters can be obtained that are independent of the range

of 2� values of the re¯ections used in the re®nement (Angel et

al., 2000). Re®nement of crystal offsets or diffractometer

aberrations such as circle zero-errors can be incorporated by

the iterative method of Dera & Katrusiak (1999) and

symmetry-constrained unit-cell parameters can be obtained by

the method of vector-least-squares (Ralph & Finger, 1982).

3.2. Main integration

Once the peak parameters and UB matrix have been

determined, the integration of the whole data set can be

performed by re®ning only the intensity and position for each

pro®le, and the full set of peak pro®le tests (Fig. 1) are

performed on the results of every re¯ection. Note that the

integrated intensities obtained for the stronger peaks in the

pre-processing stage are discarded in order to integrate the

entire data set on the same basis. As Pavese & Artioli (1996)

demonstrated, this constrained re®nement leads to a greater

proportion of weak intensities being successfully integrated on

a ®rst pass than would be obtained by `counting' methods of

integration. Nonetheless, for weak re¯ections, or re¯ections in

areas of high and structured background, even the simulta-

neous re®nement of peak position and intensity alone is

unstable and often results in negative integrated intensities

even though a weak maximum can be present in the scan

range.

Although the positions (i.e. ! values of the peak maxima)

should be described by the UB matrix, tests have shown that

the calculated position of a peak is often displaced from the

observed position in the data collection scan by a few

hundredths of a degree. These errors can be attributed to

setting-angle errors and other experimental uncertainties. The

errors are often smaller if the effects of crystal offsets are

included in the calculation of re¯ection positions, but the

offsets are still suf®cient to bias the integrated intensity values

of strong re¯ections. Therefore, it is not recommended to use

the position calculated from the UB matrix in the ®rst attempt

at ®tting a re¯ection.

If the pro®le fails a test, the process of recovery is imple-

mented. The vector h' = UB � h is calculated (Busing & Levy,

1967) and the value of ! consistent with the values of the

components of h' and the setting angles 2�, � and ' for the

re¯ection is found. If crystal offsets or an ! circle zero were

determined along with the re®nement of the UB matrix, the

effect of these is included in the calculation. The peak pro®le

function is then re®ned again with the ! position of the �1

peak ®xed at this calculated value. After this re®nement, the

same series of tests are applied to the re®ned parameters.

Pro®les that failed a test on the ®rst integration pass because

of aberrant peak shape will again fail on this second re®ne-

ment with constrained peak position. Pro®les that are valid

but include only weak maxima will, in general, be successfully
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integrated. For such weak maxima, a small inaccuracy in

calculated peak position does not introduce a signi®cant bias

in the integrated intensity because the intrinsic uncertainty in

the integrated intensity is relatively large.

3.3. Some observations on statistics

Normally e.s.d.(I) is assigned to re¯ections on the basis of

counting statistics so that one obtains the well known rela-

tions:

I � Pÿ �np=nb�B;
e:s:d:�I� � �Pÿ �np=nb�2

B�1=2;
�3�

in which P is the total number of counts in the np channels

assigned to the peak, and B is the total number of counts in the

nb channels assigned to the background. This is independent

of the method by which the peak and background limits are

assigned. The e.s.d.(I®t) obtained by least-squares ®t of the

data with a pro®le function has a much less direct dependence

on the intensity:

e:s:d:�Ifit� / V
1=2
II ��2

w�1=2

� V
1=2
II

1

nÿm

Xn
i�1

1

yi;obs

�yi;obs ÿ yi;calc�2

" #1=2

; �4�

in which the term VII is the variance of the intensity derived

from the least-squares ®t of the observed pro®le represented

by the n data points yi,obs in the pro®le, yi,calc are the corre-

sponding calculated values from the re®ned pro®le function,

and m is the number of re®ned variables in the pro®le func-

tion.

For the majority of data of intermediate intensities collected

on a diffractometer with a rescan so as to attain a speci®ed

constant precision in terms of I/e.s.d.(I), the estimates of this

ratio are similar for both methods (Fig. 3); for these re¯ections

I/e.s.d.(I) ' I®t/e.s.d.(I®t). But for strong re¯ections in which

the background level is insigni®cant compared with the

intensity on the diffraction peak, the two estimates of

I/e.s.d.(I) diverge. When I � B counting statistics [equation

(3)] suggests that I/e.s.d.(I) = I1/2. But for the ®tting method

[equation (4)], both V
1=2
II and ��2

w�1=2 scale approximately with

(I®t)
1/2, so that one obtains the relationship for strong re¯ec-

tions that e.s.d.(I®t) / I®t or that the ratio I®t/e.s.d.(I®t) remains

a constant (Fig. 3a).

An assessment of which estimate of e.s.d.(I) is the better

estimator of the true uncertainty of the intensity measure-

ments of the stronger re¯ections can be made by averaging

intensity data for a high-symmetry crystal. This allows the

comparison of the population standard deviation of

symmetry-equivalent intensities with the estimated standard

deviations of the individual intensities (e.g. Blessing, 1987).

For high-quality test crystals, such as the ruby spheres

distributed at the Ottawa IUCr congress, it appears that the

e.s.d.(I) based on counting statistics signi®cantly overestimates

the reproducibility (population standard deviation) of strong
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Figure 3
A plot of I/e.s.d.(I) for an intensity data set with high signal-to-noise ratio.
It was collected from an `IUCr' ruby sphere with an Xcalibur
diffractometer and Mo K� radiation (40 kV, 30 mA) in `constant
precision' mode. Part (b) is an enlargement of the low-intensity region
of part (a). Open symbols are estimates of I/e.s.d.(I) obtained by counting
integration and a ®xed background interval; closed symbols are
I®t/e.s.d.(I®t) obtained by integration. The two sets of intensities have
been placed on the same numerical scale for ease of comparison. Both
methods of integration produce similar results for weak re¯ections only
collected in the prescan, and those collected with the second scan aimed
at obtaining I/e.s.d.(I) = 33. Counting methods produce the expected
parabolic dependence of I/e.s.d.(I) with intensity for strong re¯ections
only collected with the fast prescan, whereas I®t/e.s.d.(I®t) is approxi-
mately constant for these re¯ections.

Figure 4
A plot of the ratio of the population standard deviation of symmetry-
equivalent re¯ections, �int, to �ext derived from the e.s.d.'s assigned to the
individual intensities (after Blessing, 1987) for the two data sets shown in
Fig. 3. The large values for the strong re¯ections with e.s.d.(I) derived
from counting (open symbols) compared with those from e.s.d.(I®t)
(closed symbols) indicate that the latter is a better estimate of the
reproducibility of the measurements of integrated intensities. The result
appears to be a general phenomenon for all data sets examined.
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re¯ections, whereas e.s.d.(I®t) from ®tting is a better estimate

of the true uncertainty of the peak intensity (Fig. 4).

4. Conclusions

Peak pro®ling methods borrowed from powder diffraction

provide a means by which tests for diffraction peak shapes can

be de®ned in a quantitative manner, thereby allowing the

automation of the integration of step-scanned intensity data.

This has particular merit in those cases where diffraction

peaks from the components of environmental cells, such as

diamond-anvil cells, interfere with the diffraction data from

the sample crystal. As an example consider the pro®les shown

in Figs. 2(b) and 2(c). The peak pro®ling method returns

values of the integrated intensities that are in good agreement

with those from scans of symmetry-equivalent re¯ections that

are not affected by such interference; the value of the aver-

aged structure factor divided by the population standard

deviation, �F/�int� �F� (after Blessing, 1987), is 37. By contrast,

the ®xed-background method of integration by counting yields

an underestimate of the true intensity for the pro®le in

Fig. 2(b), and an overestimate of that in Fig. 2(c). The value of
�F/�int� �F� is therefore signi®cantly worse (5.1). In this case, the

re¯ection of Fig. 2(b) was then excluded as an outlier (Bles-

sing, 1987). But in cases where symmetry equivalents were not

accessible, such an incorrect intensity would not be identi®ed,

to the detriment of the structure re®nement.

The ideas presented in this paper have been implemented in

a software package for Microsoft Windows, WinIntegrStp,

which is available at http://www.crystal.vt.edu/. The software

can handle several input ®le formats from several commercial

diffractometer control packages and accommodates, via an

editable instrument parameter ®le, various monochromator

and diffraction geometries, including truly monochromatic

data from synchrotron sources. The software is fully docu-

mented and provides the user with the opportunity to control

the testing procedures described in this paper.

Although the procedures for peak integration have been

described in the context of step-scanned data collected with a

point detector, there is no reason in principle why a similar

approach cannot be applied to the integration of data from

area detectors. Such an application would require the collec-

tion of data in relatively narrow frames so that each pro®le

would appear in several consecutive images. Integration of the

individual images would then yield a pro®le for analysis,

although one might wish to combine these two conceptual

steps into a single calculation in which an appropriate three-

dimensional pro®le function was ®tted directly to the data.

The WinIntegrStp software has been developed from code

originally written to perform Lehmann±Larsen integration by

L. W. Finger of the Geophysical Laboratory in Washington,

DC. Recent developments of the software have been

supported by NSF grant EAR-0105864 to N. L. Ross and RJA.

The author is grateful to D. R. Allan, T. Boffa-Ballaran, R.

Miletich, N. Ross, J. Smyth and J. Zhao for testing many

versions of the code and providing suggestions for its

improvement.
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